
Probabilistic Naming of Functions in Stripped Binaries
James Patrick-Evans

Royal Holloway, University of London
Egham, United Kingdom

james.patrick-evans.2015@rhul.ac.uk

Lorenzo Cavallaro
King’s College London

London, United Kingdom
lorenzo.cavallaro@kcl.ac.uk

Johannes Kinder
Bundeswehr University Munich

Munich, Germany
johannes.kinder@unibw.de

ABSTRACT
Debugging symbols in binary executables carry the names of func-
tions and global variables. When present, they greatly simplify the
process of reverse engineering, but they are almost always removed
(stripped) for deployment. We present the design and implementa-
tion of punstrip, a tool which combines a probabilistic fingerprint
of binary code based on high-level features with a probabilistic
graphical model to learn the relationship between function names
and program structure. As there are many naming conventions and
developer styles, functions from different applications do not neces-
sarily have the exact same name, even if they implement the exact
same functionality. We therefore evaluate punstrip across three lev-
els of namematching: exact; an approach based on natural language
processing of name components; and using Symbol2Vec, a new em-
bedding of function names based on random walks of function call
graphs. We show that our approach is able to recognize functions
compiled across different compilers and optimization levels and
then demonstrate that punstrip can predict semantically similar
function names based on code structure. We evaluate our approach
over open source C binaries from the Debian Linux distribution
and compare against the state of the art.

CCS CONCEPTS
• Security andprivacy→ Software reverse engineering; •Com-
puting methodologies→Machine learning.

KEYWORDS
binaries, function names, machine learning
ACM Reference Format:
James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder. 2020. Proba-
bilistic Naming of Functions in Stripped Binaries. In Annual Computer Secu-
rity Applications Conference (ACSAC 2020), December 7–11, 2020, Austin, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3427228.3427265

1 INTRODUCTION
Reverse engineering is a crucial step in security audits of commer-
cial software, forensic analysis of malware, software debugging
and exploit development. A main task in reverse engineering is to
identify functional components in the software and discover the
meaning behind different portions of binary code. When faced with
a flat region of executable code, it is difficult and time consuming to
gain a high-level understanding of what it does. During debugging,

ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Annual Computer
Security Applications Conference (ACSAC 2020), December 7–11, 2020, Austin, USA,
https://doi.org/10.1145/3427228.3427265.

software developers can use symbols to relate binary code to source-
level information such as file names, data structures and names
of functions. When releasing software for distribution, however,
symbols are routinely stripped from the binaries; this decreases
the file size and impedes reverse engineering of proprietary code
(commercial or malicious).

State-of-the-art reverse engineering tools, such as the IDA Pro
disassembler, use databases of function signatures to reliably iden-
tify standard functions such as those included by a statically linked
C runtime. This works well for systems where libraries are stan-
dardized and rarely recompiled. IDA Pro for example, maintains a
directory of FLIRT signature files for the most common Windows
libraries replicated for the most common compilers and instruction
set architectures (ISAs). Reverse engineers also manually create
custom databases of such signatures, because they can immedi-
ately identify many functions which otherwise would have to be
rediscovered in new binaries through costly manual analysis. Such
signature-based mechanisms can allow for some variation in the
exact byte sequence matched, but they do not go further than rela-
tively simple wildcard mechanisms.

The problem of matching sequences of binary code while al-
lowing for variation presents itself in a number of domains. Code
clone detection [9, 18, 24, 27, 41], vulnerable code identification [11],
code searching [15], and software plagiarism detection [31] address
the problem of finding exact matches between software compo-
nents. They focus on finding a fixed set of previously seen functions
with the main contributions drawn from methods of identifying
semantically-equivalent code that have undergone various soft-
ware transformations; these transformations are typical of source
code compiled with different compilers or compilation optimiza-
tions. Techniques typically adopt static or dynamic approaches that
build features of a functions interpreted execution or rely on fixed
properties of compiler generated machine code. Patch code analy-
sis [24, 52] borrows the same techniques from the problem domain
for feature collection however it requires an existing executable
with prior information to perform analysis on differential updates.

Common to these domains and approaches is that they aim to
identify exact function matches in isolation in previously seen exe-
cutables. They do not provide a way to derive names for functions
that do not have an exact (semantic or syntactic) match in the
set of known binaries. In contrast, our goal is to learn a general
relationship between function names and their binary code.

We implement this approach with punstrip, our tool for revers-
ing the stripping process and inferring symbol names in stripped
binaries. Punstrip builds a probabilistic model that learns how devel-
opers use and name functions across a set of existing open source
projects; using this model, we infer meaningful symbol informa-
tion based on similarities in program structure and semantics in
previously unseen, stripped binaries. It is not necessary to discover

1

https://doi.org/10.1145/3427228.3427265
https://doi.org/10.1145/3427228.3427265

ACSAC 2020, December 7–11, 2020, Austin, USA James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder

ELF Binaries

Analysis

Function
Boundaries

Disassembly

VEX IR

Feature
Extraction

Features

Probabilistic Fingerprint

Factor Graph

CRF

Evaluation

Exact

NLP

Symbol2Vec

ELF Exporter

Figure 1: A block diagram overview of the components in Punstrip.

exactly the same identifiers that the developers used in the original
program: for reverse engineering, we are interested in discovering
symbol names that are helpful to an analyst. With punstrip, reverse
engineers are able to pre-process an unknown binary to automati-
cally annotate it with symbol information, saving them time and
preventing mistakes in doing further manual analysis. We make
punstrip available as open source1.

We make the following contributions:
• We present a novel approach to function identification and
signature recognition for stripped binaries that uses features
in a higher-level intermediate representation. This approach
can scale to real world software and seeks to be agnostic to
both compiler architectures, binary formats, and optimiza-
tions.

• We introduce a probabilistic graphical model for inferring
function names in stripped binaries that compares the joint
probability of all unknown symbols simultaneously rather
than treating each function in isolation. The model builds on
our probabilistic fingerprint and analysis between symbols
in binaries.

• We describe Symbol2Vec, a new high dimensional vector
embedding for function symbols. We demonstrate that the
embedding is meaningful by creating a set of relationships
within the space of function names drawn from C bina-
ries distributed as part of Debian GNU/Linux. We use Sym-
bol2Vec as one metric in the evaluation of punstrip to capture
relations between function names that do not share any lex-
ical components. We release our vector embeddings2 to the
research community to provide a common method of eval-
uating semantically similar function names in compiled C
binaries.

We evaluate punstrip against the current state of the art in func-
tion name detection against all C binaries in Debian with 10-fold
cross validation. Furthermore, we evaluate our probabilistic finger-
print against leading tools using binaries with a large common code
base that were compiled in different environments.

In the remainder of this paper, we give an overview of punstrip’s
pipeline (§2), introduce our technical approach to the problem of
function fingerprinting (§3), and describe the abstract graphical

1https://github.com/punstrip/punstrip
2https://github.com/punstrip/Symbol2Vec

structure for learning (§4). We then present our method for relat-
ing function names, including Symbol2Vec (§5), before evaluating
punstrip against previous work (§6). Finally, we discuss limitations
of our approach (§7), contrast with related work (§8) and present
our conclusions (§9).

2 OVERVIEW
Figure 1 shows an architectural overview of the punstrip pipeline.
Punstrip takes as input a set of ELF binaries, which for training
should be unstripped. In the initial analysis stage, punstrip extracts
function symbols and their boundaries as defined in the symbol
table, disassembles them, and lifts the instructions to the VEX inter-
mediate representation. From this representation and interproce-
dural control flow information among functions, punstrip extracts
a set of features that are stored in a database. Those features are
used to build a per-function fingerprint, as well as a factor graph
representing the relationships between functions and feature values
for each executable. Our probabilistic fingerprint and factor graph
are used to construct a Conditional Random Field (CRF) that learns
how individual functions interact with other code and data.

After training a model on a large corpus of programs that include
symbol information, we are able to use the learned parameters
to infer the most likely function names in stripped binaries. The
inferred function symbol names can then be added to the stripped
binary and used for debugging and reverse engineering purposes. In
this paper, we focus exclusively on the problem of naming functions;
for detecting function boundaries in stripped binaries, we refer to
recent approaches from the literature [2, 3].

We evaluate the accuracy of labeling with three metrics: (1) exact
matches of function names, (2) normalized matches of function
names, and (3) Symbol2Vec, a function name embedding based on
random walks on callgraphs taken from a large dataset of binaries.
In the remainder of this section we detail the individual stages of
the pipeline referring to examples in Figure 2, in which we separate
known from unknown functions, that we aim to label.

2.1 Probabilistic Fingerprint
Figure 2a shows the disassembly of a function from a stripped
binary. Static analysis is able to detect that the unknown function
is called from the unnamed function at address 0x0162d and calls
the dynamically linked function errno_location (which gets the

2

https://github.com/punstrip/punstrip
https://github.com/punstrip/Symbol2Vec

Probabilistic Naming of Functions in Stripped Binaries ACSAC 2020, December 7–11, 2020, Austin, USA

(fcn) 0x01fb0

; CALL XREF from 0x0000162d 0x0162d

0x00001fb0 test rdi , rdi

0x00001fb4 je 0x2027

0x00001fb6 mov esi , 0x2f

0x00001fbb mov rbx , rdi

0x00001fbe call imp.errno_location

0x00001fc3 test rax , rax

0x00001fc6 je 0x2017

0x00001fc8 lea rdx , [rax + 1]

0x00001fcc mov rcx , rdx

0x00001fcf sub rcx , rbx

0x00001fd2 cmp rcx , 6

0x00001fd6 jle 0x2017

0x00001fdf mov ecx , 7

0x00001fe6 jne 0x2017

0x00001fed call 0x022b4

...

(a) Disassembly of an unnamed function in a stripped dynami-
cally linked ELF executable.

IRSB {

t1:Ity_I64 t2:Ity_I64 t3:Ity_I64 t6:Ity_I64

t7:Ity_I1

00 | ------ IMark(0x1fb0 , 3, 0) ------

01 | t2 = GET:I64(rdi)

02 | PUT(cc_op) = 0x0000000000000014

03 | PUT(cc_dep1) = t2

04 | PUT(cc_dep2) = 0x0000000000000000

05 | PUT(pc) = 0x0000000000001fb3

13 | ------ IMark(0x1fb4 , 2, 0) ------

14 | t15 = CmpEQ64(t2 ,0 x0000000000000000)

15 | t14 = 1Uto64(t15)

16 | t12 = t14

17 | t16 = 64to1(t12)

18 | t7 = t16

19 | if (t7) { PUT(pc) = 0x2027; Ijk_Boring }

NEXT: PUT(rip) = 0x0000000000001fb6; Ijk_Boring

}

...

(b) VEX Intermediate Representation (IR) of the unknown func-
tion’s first basic block.

errno_location

0x01fb0

0x022b4

(c) General graph based conditional random field based on rela-
tionships between features, knowns, and unknowns.

(fcn) set_program_name

; CALL XREF from 0x0000162d main

0x00001fb0 test rdi , rdi

0x00001fb4 je 0x2027

0x00001fb6 mov esi , 0x2f

0x00001fbb mov rbx , rdi

0x00001fbe call imp.errno_location

0x00001fc3 test rax , rax

0x00001fc6 je 0x2017

0x00001fc8 lea rdx , [rax + 1]

0x00001fcc mov rcx , rdx

0x00001fcf sub rcx , rbx

0x00001fd2 cmp rcx , 6

0x00001fd6 jle 0x2017

0x00001fdf mov ecx , 7

0x00001fe6 jne 0x2017

0x00001fed call strchr

...

(d) Disassembly of the same function with inferred function
names added to the binary’s symbol table.

a
strchr

c
strsep

e strstr

e
xstrtok

(e) A projection of the most similar Symbol2Vec embeddings to strchr.

Figure 2: Stages in punstrip’s pipeline for learning and evaluating function name inference on stripped binaries.
3

ACSAC 2020, December 7–11, 2020, Austin, USA James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder

error identifier from the last executed system call) before calling
0x022b4 .
As the binary sequence of machine code can differ even for the

same source code depending on compilation settings, we opt for
using an intermediate representation that abstracts some imple-
mentation detail. We lift machine code to the VEX intermediate
representation, as shown in Figure 2b, which offers an appropriate
level of detail and abstraction for our analysis. From this represen-
tation, we extract a collection of features that help identify names
of functions designed to be agnostic to changes in compilers and
optimizations. While the binary code of a function may change due
to compiler differences, and hence values of our features, our intu-
ition is that even if a compiler modifies the order, number of, and
type of instructions, changes in feature values based on optimized
VEX IR will still be similar.

After extracting a set of features we first convert each feature into
a vectorized form and use it as an input to a multiclass classifier. The
output of multiclass classification gives a probability mass function
over the set of all unknown functions in our training data. Thus for
each function, we learn a probability distribution over all function
names given input features derived from VEX.

2.2 Probabilistic Structural Inference
After extracting high-level features and relationships between func-
tions, we build a probabilistic graphical model in the form of a Con-
ditional Random Field (CRF) [29, 49] as depicted in Figure 2c. The
CRF operates on a factor graph which factorizes inter-dependencies
between functions and separates unknown and known information.
Figure 2c shows that the unknown function 0x01fb0 has a fac-
tor based on calling the known function errno_location , factors
based on statically derived known features such as its probabilistic
fingerprint, and a factor based on its relationship with 0x022b4 .

Our CRF models pairwise and generic factor-based relationships
among code and data for all functions in an executable.We first train
the graphical model and learn the weightings of relationships on a
large set of prior unstripped binaries before building a new CRF for
each stripped binary and applying the learned model parameters.
Function names are then inferred by maximizing the conditional
probability of unknown function names, given the known infor-
mation and our models parameters. This enables punstrip to take
into consideration known information from the whole binary si-
multaneously rather than considering each function in isolation;
this may help identify functions that are weakly identifiable in and
of themselves, but have strong connections to other more easily
recognizable functions.

2.3 Function Name Matching and Evaluation
Finally, after we have inferred function names for the set of un-
known symbols, we modify the ELF executable’s symbol table and
insert entries into the strtab and symtab sections. As a result, sub-
sequent disassembly will yield the newly predicted function names
(Figure 2d).

The names developers give to functions can vary wildly based
on personal preferences and project styles. Therefore, relying on
exact lexical matching only to evaluate the accuracy of name pre-
dictions would miss cases where predicted names are semantically

correct but syntactically different. We therefore implement two
additional metrics for evaluating name similarity. First, we propose
a method based on natural language processing, which uses lexical
techniques to determine the similarity of two names. The metric
tries to mitigate grammatical differences in language used, expands
common naming conventions used by programmers, and takes into
account similar words, such as start and begin, within each name.
Second, we introduce Symbol2Vec, a new embedding for function
names based on the callgraph of programs. As it is only based on
caller-callee relationships, it completely abstracts away the text
of function names and provides a similarity metric based only on
how software developers use and name functions. Figure 2e demon-
strates how Symbol2Vec embeddings are used when evaluating the
similarity of function names.

3 PROBABILISTIC FINGERPRINT
We now explain how we create a probabilistic fingerprint for each
function. We give an overview of how we extract features using
static (§3.1) and symbolic (§3.2) analysis, and we detail how ex-
tracted features are combined into a probabilistic identifier (§3.3).

3.1 Static Analysis
All features extracted from each function are listed in Table 1. We
include two low-level features that help to find exact matches: a
hash of the machine code and a hash of the opcodes in the disas-
sembly. The opcode hash is included to recognize exact patterns of
generated machine code with different parameters or relative off-
sets, which would not be matched by an exact binary hash. All other
features are extracted from VEX IR. Our choice of VEX IR comes
with the advantage of VEX providing a more abstract view than
alternative representations and not requiring to deal with low-level
details of the machine state, such as the EFLAGS register [28].

Symbols contained in an ELF binary’s symbol table detail a com-
ponent’s address, size and string description in the target executable.
This information is first extracted along with the raw bytes cor-
responding to the function. Using capstone [39], pyvex, and each
function’s boundaries as specified in the binary’s symbol table [4],
we lift each basic block into its optimized VEX IR and build a labeled
Intraprocedural Control Flow Graph (ICFG) for each function. We
then resolve dynamically-linked objects and build a callgraph for
each statically-linked function in the binary.

We track all features given in Table 1 and convert this structure
of features into a form that can be represented by a single stacked
vector to be used as a fingerprint for each function. When labeling
the ICFG, VEX basic blocks are distinguished by their terminators
(jumps, calls, returns, and fall-throughs). We only store numeric
integer constants, greater than 28, that are not operands of jump
instructions to focus on infrequent and distinctive values.

After machine code is lifted into the VEX IR we categorize each
instruction into a one-hot encoded vector according to the regular
expressions defined in Table 2. The one-hot encoded vectors are
then summed to produce an impression of functions operations.

To convert generic graphical structures to a vector representation
we utilize the feature embedding technique graph2vec [40]. We
compare the similarity of all ICFGs by using an implementation of
the Weisfeiler-Lehman graph kernel [44]. By training a graph2vec

4

Probabilistic Naming of Functions in Stripped Binaries ACSAC 2020, December 7–11, 2020, Austin, USA

Table 1: Features extracted from functions and their representation in the probabilistic fingerprint.

Feature Type Description

Static features

Size Scalar Size of the symbol in bytes.
Hash Binary SHA-256 hash of the binary data.
Opcode Hash Binary SHA-256 hash of the opcodes.
VEX instructions Scalar Number of VEX IR instructions.
VEX jumpkinds Vector(8) VEX IR jumps inside a function e.g. fall-through, call, ret and jump
VEX ordered jumpkinds Vector(8) A ordered list of VEX jumpkinds.
VEX temporary variables Scalar Number of temporary variables used in the VEX IR.
VEX IR Statements, Expressions and Operations Vector(54) Categorized VEX IR Statements, Expressions and Operations.
Callers Vector(N) Vector one-hot encoding representation of symbol callers.
Callees Vector(N) Vector one-hot encoding representation of symbol callees.
Transitive Closure Vector(N) Symbols reachable under this function.
Basic Block ICFG Vector(300) Graph2Vec vector representation of labeled ICFG.
VEX IR constants types and values Dict Number of type of VEX IR constants used.

Symbolic features

Stack bytes Scalar Number of bytes referenced on the stack.
Heap bytes Scalar Number of bytes referenced on the heap.
Arguments Scalar Total number of function arguments.
Stack locals Scalar Number of bytes used for local variables on the stack.
Thread Local Storage (TLS) bytes Scalar Number of bytes referenced from TLS.
Tainted register classes Vector(5) One-hot encoded vector of tainted register types, e.g., stack pointer,

floating point.
Tainted heap Scalar Number of tainted bytes of the heap.
Tainted stack Scalar Number of tainted bytes of the stack.
Tainted stack arguments Scalar Number of tainted bytes that are function arguments to other functions
Tainted jumps Scalar Number of conditional jumps that depend on a tainted variable.
Tainted flows Vector(N) Vector of tainted flows to known functions.

model, each ICFG is converted into a vector space in which similar
graphical structures are numerically similar. We store each vector
in an Annoy Database3 that allows us to quickly find the nearest
vectors for each graph based on the Euclidean distance from our
model’s embeddings (and hence the most similar graphs). Training
the graph2vec model is computationally expensive; however, it
allows us to avoid comparing pairs of graphs with a graph kernel
over the testing set for every element in the training set. Using
graph2vecwe are able to compare the similarity of abstract graphical
structures in O(1) after training the model.

3.2 Symbolic Analysis
We extract additional semantic features using our own symbolic
analysis built on top of the VEX IR. We write our own execution
engine over the existing ANGR [48] implementation to provide a
lightweight and more consistent analysis across multiple platforms.
After the boundaries of each basic block are known from the initial
static analysis, we are able to lift each block into VEX in Single Static
Assignment (SSA) form. Within our model, reads from registers
and memory locations with undefined contents return symbolic
values for the size of data requested.

3Annoy: Approximate Nearest Neighbors Oh Yeah: https://github.com/spotify/annoy

Function Argument Extraction. To identify the number of func-
tion arguments we carry out live variable analysis on argument
registers and memory references to pointers above the current
stack pointer. As we need to track the value of the stack pointer,
we perform a fixed point iteration algorithm to determine the base
and stack pointer values on each use. Finally, we build a model to
track memory references between basic blocks as the VEX IR’s SSA
form is only consistent per basic block.

Heap and Stack Analysis. We implement a stack of 2048 bytes
starting at 0x7FFFFFFFFFF0000 and model the stack registers, seg-
ment registers, and heap accordingly. For each function, we track
the total number of bytes referenced on both the heap and stack,
local variables and function arguments placed on the stack, thread
local storage accesses, and perform taint analysis to calculate data
flows from each input argument to arguments of other functions.
Finally, we compute the transitive closure for each function under
the binary’s callgraph.

Symbolic Execution. After identifying the number of input ar-
guments to a function we symbolically execute the function us-
ing our own execution engine that uses Claripy [10, 47] to for-
mulate symbolic values and expressions. This allows us to create
symbolic expressions for return values from each function, e.g.

5

https://github.com/spotify/annoy

ACSAC 2020, December 7–11, 2020, Austin, USA James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder

Table 2: Rules for VEX IR categorization.

Regex Description

VEX IR Operations

Iop_Add(.*) Addition
Iop_Sub(.*) Subtraction
Iop_Mul(.*) Multiplication
Iop_Div(.*) Division

Iop_S(h|a)(.*) Arithmetic and logical shifts
Iop_Neg(.*) Negation
Iop_Not(.*) Logical NOT
Iop_And(.*) Logical AND
Iop_Or(.*) Logical OR
Iop_Xor(.*) Logical XOR
Iop_Perm(.*) Permute bytes
Iop_(.*)to(.*) Type conversion

Iop_Reinterp(.*)as(.*) Reinterpretation
Iop_(Cmp|CasCmp)(.*) String comparison
Iop_Get(M|L)SB(.*) Get significant bit
Iop_Interleave(.*) Bit interleaving
Iop_(Min|Max)(.*) Min/max operations

Statements

Ist_Exit Exit
Ist_IMark Instruction marker
Ist_MBE Exit

Ist_Put_(.*) Put
Ist_(Store|WrTmp) Write

𝑟𝑒𝑡 |= 𝑆𝑦𝑚𝑏𝑉𝑒𝑐 (𝐴𝑅𝐺1) + 𝐵𝑖𝑡𝑉𝑒𝑐 (0𝑥2). Where our symbolic exe-
cution engine cannot easily determine the result of an operation,
e.g. the x86_64 instruction AESENC, we inject symbolic values.

After identifying symbolic variables we are able to extract call
sites to other functions that are control-dependent on a symbolic
variable. We then track the number of call sites that is control-
dependent on each input argument and use it as a feature in our
fingerprint. We run our analysis for every recovered function argu-
ment to extract per input-dependent taints. Finally, we also include
an analysis pass that taints all input arguments to mitigate against
reordering of function arguments producing different results.

Register Classification. We classify registers referenced during
execution into five generic classes: general purpose, floating point,
stack and base pointer, segment register, and control register. For
each input argument we produce a vector of tainted register classes
from the set of tainted registers. This allows punstrip to capture
the types of behavior performed by functions for individual argu-
ments. Finally, we produce a final vector of tainted register classes
irrespective of taint.

3.3 Probabilistic Classification
We aim to convert features extracted in Table 1 to a probability
distribution over a corpus of symbol names 𝑠 ∈ S. For binary and
dictionary typed features we emit a vector of size |S| if the feature
has been seen in our training dataset for each function name. We

Table 3: Feature functions used in the CRF. label-node rela-
tionships relate known features 𝑥 ∈ x to the current node𝑦𝑢 .
label-label relationships relate unknown nodes 𝑦𝑢 → 𝑦𝑣 ∈ y.

Relationship Description

label-node relationships

Probab. fingerprint The probability of function 𝑦𝑢 given its
extracted features in Table 1.

label-label relationships

𝑑th pairwise callers The probability of of function𝑦𝑢 calling
𝑦𝑣 through 𝑑 − 1 other nodes.

𝑑th pairwise callees The probability of of function 𝑦𝑢 being
called by 𝑦𝑣 through 𝑑 − 1 other nodes.

Pairwise data xrefs The probability of of function 𝑦𝑢 refer-
encing object 𝑥𝑣 .

Generic factor callers The probability of of function𝑦𝑢 calling
the set of known functions x.

Generic factor callees The probability of of function 𝑦𝑢 being
called by the set of known functions x.

stack the resultant scalars and vectors into a single feature vector
to be used as the input to a machine learning classifier. As the
feature vector is sparse we reduce its dimensionality by performing
Principal Component Analysis (PCA) and scale the transformed
principle components such that each column has 0mean and a unit
variance.

Finally, we train a Gaussian Naive Bayes4 model to predict the
probability of each input function belonging to 𝑠 ∈ S. Our model is
implemented using ScikitLearn [40].

4 PROBABILISTIC STRUCTURAL INFERENCE
In this section we explain how we combine our probabilistic fin-
gerprint with a third order general graph based CRF for symbol
inference. First we explain how we generate the CRF (§4.1) using
relationships between multiple symbols and features of individ-
ual functions. We then explain how punstrip performs parameter
estimation (§4.2) and finally inference (§4.3).

4.1 CRF Generation
We refer to the process of symbol inference as predicting the most
likely symbol names using a probabilistic graphical model that
utilizes unary potentials from our probabilistic fingerprint and
known nodes, pairwise potentials between unknown functions, and
generic factor potentials between sets of unknowns and knowns.

In general, CRFs are used to predict an output vector y =

{𝑦0, 𝑦1, . . . , 𝑦𝑁 } of random variables that may have dependencies
on each other given an observed input vector x. Our goal is that
of structured prediction, or learning high-level relationships be-
tween symbols. Modeling the dependencies between all symbols
in binary executables would most likely lead to an computation-
ally intractable graphical model, therefore we use a discriminative

4We found Gaussian Naive Bayes out-performed Random Forests, Logistic Regression,
and Neural Networks.

6

Probabilistic Naming of Functions in Stripped Binaries ACSAC 2020, December 7–11, 2020, Austin, USA

approach and model the conditional distribution 𝑝 (y | x) directly
without needing to model 𝑝 (x | y).

As depicted in Figure 3, the CRF built is of the general graph
form with relationships between known functions, known features
(known features of unknown functions), and unknown functions.
In our model, known vertices represent feature values or known
function names, e.g., Size = 5, name = read ; unknown vertices
represent unknown symbol names. Edges between nodes repre-
sent relationships between feature values of which we define two
types: label-observation and label-label. Label-observation edges
represent relationships connecting known nodes in x to unknown
nodes in y and label-label edges represent relationships between
unknown nodes in y. Each feature function is replicated for each
symbol name 𝑠 ∈ S. This is implemented as a vector N of size |S|
with each element 𝑛 ∈ N → [0, 1]. Our implementation exploits
the sparsity between connected functions across millions of unique
function names by storing each vector in a sparse matrix.

The feature functions used in building the CRF are listed in
Table 3. For pairwise feature functions, we track dependencies to
the 𝑑𝑡ℎ degree for 𝑑 ∈ {1, 2, 3}. To clarify, under the callee𝑑 feature
function, each edge potential is a probability distribution over all
known symbol names S which describes the probability of the
symbol name transition 𝑠𝑑𝑢 → 𝑠𝑑𝑣 . This represents the probability
of a symbol 𝑠𝑢 being 𝑑 calls away from 𝑠𝑣 .

The CRF aims to predict the conditional probability over all
unknown nodes y simultaneously given the set of known nodes
x. Let 𝐺 be a factor graph of relationships over all known symbols
x and all unknown symbols y, then (x, y) is a conditional random
field if for any value 𝑥 ∈ x, the distribution 𝑝 (y | x) factorizes
according to 𝐺 . If we partition the graph 𝐺 into maximal cliques
C = {𝐶1,𝐶2, ...,𝐶𝑃 } and into a set of factors 𝐹 = {Ψ𝑐 }, then the
conditional distribution for the CRF is given by:

𝑝 (y | x) = 1

Z(x)
∏
𝐶𝑝 ∈C

∏
Ψ𝑐 ∈𝐶𝑝

Ψ𝑐
(
y𝑐 , x𝑐 ;\𝑝

)
(1)

whereZ(x) is a normalizing constant.
All of our label-label feature functions are discrete and return 0

or 1 for each function name depending on if the relationship exists
in the training set. The weightings for pairwise feature functions
are repeated for each clique and can be thought of as a global
matrix between all function names N × N. Then there exist |N|
pairwise feature functions between a known and unknown node
per relationship, e.g., for the first callee relationship, the probability
of a known function being called by every other function in S. We
set Ψ𝑐 to be log linear for efficient inference and define it in the
usual way as follows:

Ψ𝑐 (y𝑐 , x𝑐 ;\𝑝) = exp
©«
𝐾 (𝑝)∑︁
𝑘=1

\𝑝𝑘 𝑓𝑝𝑘 (y𝑐 , x𝑐)
ª®¬ (2)

whereby 𝐾 (𝑝) returns the feature functions connected to vertex
𝑝 . Both weightings \𝑝𝑘 and feature functions 𝑓𝑝𝑘 are indexed by
vertex 𝑘 and factor 𝑝 implying that each factor has its own set of
weights. As the graphical structure of binaries is not fixed, and
hence the structure of our CRF, our implementation replicates the
weightings of each feature function globally. The normalization
constantZ (x) is defined as

𝑥0

𝑦1

𝑦2

𝑦3

𝑦4

Unknown Functions Known Functions Known Features

Figure 3: A visualisation of a snapshot of the general graph
based condition randomfield showing known and unknown
nodes and the relationships between them. Different types
of relationships are represented by separate colors. Pairwise
and generic factor based feature functions are represented
by rectangles and polygons.

Z (x) =
∑︁
y

∏
𝑐𝑝 ∈C

∏
Ψ𝑐 ∈𝐶𝑝

Ψ𝑐
(
y𝑐 , x𝑐 ;\𝑝

)
(3)

4.2 Parameter Estimation
To estimate the weightings associated with the CRF we use a maxi-
mum likelihood approach, i.e., 𝜽 is chosen such that the training
data has the highest probability under the model. We achieve this
by maximizing the pseudo log-likelihood given by Equation 4 over
all of our training set graphs 𝑔 ∈ G.

ℓ (𝜽) =
G∑︁
𝑔

C∑︁
𝑝

𝐾 (𝑝)∑︁
𝑘=1

\𝑝𝑘 𝑓𝑝𝑘 (y𝑐 , x𝑐) −
\2
𝑝𝑘

2𝜎2
(4)

As we aim to expect changes in structure and features we regular-
ize the log likelihood with Tikhonov regularization [50] so that we
do not overfit our model. We combine L-BFGS-B [8] on subgraphs
in the training set with stochastic gradient descent to iteratively
learn the optimal weightings for 𝜽 .

As we assume a large collection of independent and identically
distributed samples in the training data, using a numerical approach
to maximizing the likelihood in a batch setting is unwarranted and
needlessly slow. We suspect that different items in the training
data from disconnected graphs provide similar information about
relationship parameters; therefore we opt to using a stochastic
method for optimizing the likelihood. While such an approach is
sub-optimal, we believe the trade off for training the CRF on big
code is acceptable.

7

ACSAC 2020, December 7–11, 2020, Austin, USA James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder

4.3 CRF Inference
Whilst exact inference algorithms exist for linear-chain and tree
based models, in the general case the problem has been shown to
be NP-hard. For inferring symbol names from the CRF we employ
Maximum a Posteriori (MAP) estimation using the approximate
inference method Loopy Belief Propagation [36] combined with an
optimized greedy algorithm based on stochastic gradient descent.
We use an approximate inference method in order to model large
and complex graphical structures with the possibility for many
loops whilst still being a tractable model for convergence. Our
greedy algorithm works by making small changes to a subset of
the most confident nodes in the model. In each run of Loopy Belief
Propagation we use a random permutation of message updates to
avoid local minima. By combining the two approaches it is hoped
the model falls into a global minimum rather than a weak local
minimum. The use of the CRF gives the possibility of inferring
functions that have large machine code differences to previous
instances based on the interactions with other known and unknown
functions that are more easily recognizable.

5 MATCHING FUNCTION NAMES
We now turn to the issue of matching semantically similar func-
tion names using both existing Natural Language Processing (NLP)
techniques (§5.1) and Symbol2Vec (§5.2).

5.1 Lexical Analysis
When inferring symbol names based on heuristics of the underly-
ing code, it is difficult to know if the inferred name is correct. As
previously mentioned in §3.3, multiple symbol names have exactly
the same machine code, e.g., xstrtol, strtol and __strtol have
the same byte sequence for the same compiler settings and come
from different software packages. For this reason, we perform a
series of measures adopted from NLP to compare the differences
between the inferred symbol name and the ground truth.

We first pre-process all function names to remove common
character sequences such as capital letters surrounded by under-
scores used to signify library versions, CPU extension named func-
tions such as function.avx512, added compiler notation such as
function.constprop and function.part, and ISA-specific nam-
ing of functions. This significantly reduces the number of unique
symbol names stored in our database. Upon comparing the names
of functions for a possible match, we first calculate the Leven-
shtein [30] distance between the symbol names to detect small
changes similar to appending a suffix or prepending a prefix. Sec-
ondly we perform canonicalization and tokenization on both the
inferred and ground truth before lemmatizing and word stem-
ming [21] each token in order to match words of different tenses
and cases. This enables us to match the symbol wd_compare and
wd_comparator based on the stemmed word compar. In name
canonicalization we maintain a list of common programming
abbreviations such as fd for ‘file descriptor’ or dir for ‘direc-
tory’ and then use the dynamic programming rod cutting algo-
rithm to match sub-sequences with a scoring function that prefers
longer word lengths in order to produce a set of word descrip-
tions for each function name. For example, the real function name
hexCharToInt after symbol canonicalization is represented by the

Table 4: Examples of five target words and their closest vec-
tor representations in Symbol2Vec using the cosine distance.

Target Symbol Closest Vectors in Symbol2Vec
grub_error grub_video_capture_set_active_render_target,

grub_crypto_gcry_error,
grub_font_draw_glyph,
grub_disk_filter_write

opendir readdir, closedir, dirfw, rewinddir, readdir_r,
fdopendir

tls_init tls_context_new, mutt_ssl_starttls,
tls_deinit, eap_peer_sm_init, initialize_ctx

tor_x509_cert_get
_cert_digests

tor_tls_get_my_certs,
should_make_new_ed_keys,
router_get_consensus_status,
we_want_to_fetch_unknown_auth_certs

clock_start clock_stop, lindex_update_first,
lindex_update, index_fsub, index_denial

set {ℎ𝑒𝑥𝑎𝑑𝑒𝑐𝑖𝑚𝑎𝑙, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟, 𝑡𝑜, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 }. We then use synonym
sets from theWordnet [35] lexical database for the English language
to compare the synonyms of individual descriptions. A naming sim-
ilarity score is produced based on the Jaccard distance between the
matching canonicalization sets 𝑥𝑐 and 𝑠𝑐 as given by:

𝑑 𝑗 (𝑥𝑐 , 𝑠𝑐) =
|𝑥𝑐 ∪ 𝑠𝑐 | − |𝑥𝑐 ∩ 𝑠𝑐 |

|𝑥𝑐 ∪ 𝑠𝑐 |
(5)

The Jaccard distance gives ameasure of the overlapping similarity in
the synonyms of the canonical names for each function name.When
the distance falls below a given threshold we deem the function
descriptions to be similar.

This method aims to implement a subjectivematch on the similar-
ity between function names but may introduce false positives into
our results. However, our thresholds and techniques were derived
from manual analysis in order to align function name similarity
close to the decisions of a human analyst.

5.2 Symbol2Vec
Choosing an appropriate label for a function is a subjective goal in
which different entities may choose different labels for the same
function. The majority of the time we would hope that these labels
are similar for functionally equivalent code and exhibit a subset
of natural language features so that they can be compared similar
in our NLP matching stage (§5.1). Unfortunately one programmer
may choose a different name to that of another that does not match
in our NLP comparison whilst still being functionally relevant.
For example, consider the two real world functions that start a
network connection to a remote server and return a file handler
named init_connection and get_resource_handler. The two
functions share no lexical similarities and would be matched as
different function names under normal conditions. We create a
numerical method to serve as a metric for name similarity which
is able to alleviate this problem. We do this by projecting symbol
names into a high dimensional vector space such that functions
which are semantically similar appear close in the vector space and
functions that differ are far apart.

Analogous to Word2Vec [33], we modify the Continuous Bag Of
Words (CBOW) and Skip-Grammodel in order to create Symbol2Vec;

8

Probabilistic Naming of Functions in Stripped Binaries ACSAC 2020, December 7–11, 2020, Austin, USA

ngx_md5_init

ngx_md5_update

ngx_sha1_update

ngx_sha1_init

ngx_md5
ngx_sha1

Figure 4: t-SNE plot of the closest vectors for the SHA-1 and
MD5 hash algorithm relationship existing in Symbol2Vec.

a vector representation of function names. We replace the CBOW
model with our own Continuous Bag Of Functions (CBOF) that
uses the callgraph of binaries in order to predict the surrounding
context functions given a pivot function. Using the CBOF and a
context window of 1 we randomly sample a pivot function name
with an associated target function name that is either a callee or
caller of the pivot function.

For a large corpus of function names, very common functions
provide less information than rare function names. Therefore we
use a sub-sampling approach as per [34] to discard function names
based on the probability defined by the following formula:

𝑝 (𝑤𝑖) = 1 −
√︂

𝑡

𝑓 (𝑤𝑖)
(6)

where 𝑓 (𝑤𝑖) is the frequency of the function name𝑤𝑖 in our corpus
and 𝑡 is an arbitrary threshold that we took to be 10−5. This step
reduced our set of unique function names removing the likes of
malloc, free, and csu_init. We use TensorFlow [17] to create a
autoencoder using 150 hidden nodes and 800,000 input and output
nodes; one to represent each function name using one-hot encoding
after the sub-sampling stage. We then train our neural network
using Stochastic Gradient Descent (SGD) and Noise Contrastive
Estimation (NCE) with negative sampling on a server with 256
GiB RAM and a Intel(R) Xeon(R) Gold 6142 CPU for three days
to minimize the loss between predicting the pivot words from its
context. The resulting weights of the hidden layer when activated
by the input function name form the vector representation for
each function name. We display function names and their nearest
neighbors in our Symbol2Vec vector space for selected functions
in Table 4, which demonstrates how semantically similar function
names are grouped close together.

We use all function names found in or referenced by the code
section of ELF binaries for C executables in Debian which resulted
in 17,549 binaries, 5 million unique symbol names, and 1.1 million
function names after our naming pre-processing step. Analogous
to the classicWord2Vec analogyKing −Man +Woman = Queen ,
we are able to reveal analogical relationships between function
names. One such analogy is that between hash functions used in
the Nginx software package, where the closest vector resulting

Table 5: Lexical analogies in Symbol2Vec, where a−b+c ≈ d.

a b c d

sha1_init_ctx md5_init_ctx md5_update sha1_update
realloc malloc xmalloc xrealloc
fopen open close fclose

icmp_open open close icmp_close
hci_connect connect disconnect hci_disconnect

close_log_file fclose fopen open_log_file
sendmsg write recv recvmsg

closepipe close open openpipe
nxt_recv_file recv send nxt_send_file
gethostent get set sethostent

sha2_hmac_update sha2_update md5_update md5_hmac_update
http_server_init init close http_server_close
usb_bulk_write write read usb_bulk_read
OPENSSL_CTX_init init free OPENSSL_CTX_free

ssh_connect connect disconnect ssh_disconnect
dhcpcd_config_get dhcpcd_config_set fopen fclose
socket_accept accept close socket_close
SQLConnect connect disconnect SQLDisconnect
gethostname get set sethostname
csu_fini fini csu_init init

usb_bulk_send send recv usb_bulk_recv
SHA384File SH384_Init SHA512_Init SHA512File

Hread read write Hwrite
SHA1File SHA1_Init MD5_Init MD5File
btconnect connect disconnect btdisconnected
EndDocFile fclose fopen BeginDocFile

nxt_send_buf send recv nxt_recv_buf
SHA256File SH256_Init SHA1_Init SHA1File

cprng_deinit free malloc cprng_init
unix_sock_open open close unix_sock_close

from ngx_md5_update − ngx_md5_init + ngx_sha1_init is the
function name ngx_sha1_update as shown in Figure 4.

The dense representation of function names by Symbol2Vec
allows us to numerically express the similarity of function names.
We evaluate the effectiveness of our dense representation in the
standard way by comparing the correlation between the generated
representation and a manually created list of lexical relationships.
Our analogies are in the form a−b+c ≈ d. The full list of analogies
can be seen in Table 5.

We measure the distance between function name vectors in the
ordinal sense as we are unable to produce an exact continuous
measure for our manual analogies. For each of our analogies we
evaluate the preceding formula on the vector representations of
each word and then rank each word vector based on its cosine
distance to the new point with the closest vector having rank, and
hence distance, 0.

𝑟𝑠 = 1 −
6
∑
𝑑2
𝑖

𝑛(𝑛2 − 1)
(7)

The Spearman’s rank correlation is then calculated as per Equa-
tion 7 with 𝑛 being the number of observations and 𝑑𝑖 is the ordinal
distance d is away from a − b + c when compared to all function
name vectors for analogy 𝑖 .

We show that Symbol2Vec is a meaningful representation and
the distance between vectors in this space strongly correlates to
their semantic similarity. We achieve a Spearman’s rank correlation
coefficient of 0.97 between Symbol2Vec and our manually crafted
analogies. Thus proving a strong correlation between our semantic
analogies created by a human analyst and Symbol2Vec. In order for

9

ACSAC 2020, December 7–11, 2020, Austin, USA James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder

its use in the community and other similar applications, we release
Symbol2Vec [26] open-source.

6 EVALUATION
We evaluate punstrip in two ways. First, we evaluate our probabilis-
tic fingerprint (§6.1); for this we require a dataset that has source
code compiled under different optimization levels from different
compilers. Second, we evaluate the combination of our probabilistic
fingerprint with punstrip’s probabilistic structural inference (§6.2)
on a large scale.

6.1 Probabilistic Fingerprint
Dataset. To evaluate our approach to inferring function names

in previously unseen binaries we constructed a dataset of programs
that have moderate code reuse between them. We built a corpus
of binaries from coreutils, moreutils, findutils, x11-utils and x11-
xserver-utils. This resulted in 149 unique binaries and 1,362,379
symbols. Our criteria for choosing these binaries were open source
software packages containing a large number of ELF executables.
All of the binaries were then compiled under all combinations of
{og,o1, o2} × {static,dynamic} for both clang and gcc resulting
in 2132 distinct binaries5. We randomly split the 149 programs
into 134 in the training set and 15 in the test set. All binaries with
debugging information included were replicated to a stripped set
of binaries before running the strip utility on them; this removed
all symbols where possible (dynamic binaries still have dynamic
symbols for linking purposes). By having two copies of the binaries,
one stripped, the other with debugging information, we are able to
obtain the ground truth for the results of our experiments. Previous
work [2, 3] has shown that function boundaries can be identified in
stripped binaries with an average F1 score of 0.95 across compiler
optimizations O0-O3. Our work focuses on the problem of inferring
function names only; therefore, we assume function boundaries to
be given and take them from the ground truth.

Throughout all of our experiments, the same program name, and
hence exactly the same source code was never in both the training
and testing set. Thus 100% accuracy may be impossible as there are
many functions only contained within the testing dataset; however,
common pieces of source code may exist between binaries from
the same package. We perform this experiment to evaluate how
our probabilistic fingerprint recognizes functions compiled into
different binaries and under different settings. By training a model
on binary names for a given configuration of compilation options
we then inferred function names for a different configuration of
compilation options in the testing set. Our results can be seen in
Table 6 for which we compare our fingerprint against leading in-
dustry tools IDA FLIRT and Radare 2 Zignatures. A comparison
against BinDiff6 proved impossible since it aims to perform differ-
ential comparisons between similar binaries rather than inferring
function names in completely new binaries. We were unable draw
a comparison against existing state-of-the-art research projects
that build searchable code fingerprints such as BinGold [1] and Ge-
nius [19] because they were not fully available. We provide a larger

5clang og is equivalent to clang o1.
6https://zydnamics.com/software/bindiff.html

evaluation of the entirety of Punstrip against the leading state-of-
the-art research tool Debin [23] in §6.2 that combines program
features and structural inference.

All of our experiments were run under Debian Sid with dual Intel
Xeon CPU E5-2640 and 128GB of RAM. On average the computation
of feature functions after training was carried out in the order of
seconds. We make our full dataset available online7.

Explanation of Results. In evaluating all schemes, we calculate
Precision (P), Recall (R) and F1 score for as per Equation 8, 9, and
10. The number of true positives 𝑇𝑃 , is given by the number of
correctly named functions8. The number of false positives 𝐹𝑃 , is
given by the number of functions that were named incorrectly. The
number of false negatives 𝐹𝑁 , is given by the number of functions
in which we did not predict a name, but valid names existed. We
define the correctness of an inferred function name to be result of
our NLP matching scheme (§5) between the inferred function and
the ground truth.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (8) 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (9)

𝐹1 =
2 × 𝑃 × 𝑅
𝑃 + 𝑅 (10)

All approaches performed worst in cross compiler, cross opti-
mization inference on dynamic binaries. From manual analysis,
there are large differences in both the structure and interactions
between functions and also in the number and name of functions.
For example, clang always produces the symbol c_isalnum which
is never present in binaries compiled by gcc. It’s also worth noting
that in general, the number of symbols in a binary decreased with
higher levels of optimization, with the coreutils binary who ranging
between 80–130 functions for the dynamically linked case across
optimizations 𝑜𝑔–𝑜3 for x86_64. The same program compiled un-
der clang with og produced produced 129 symbols in its .text
section whereas under gcc with og produced 106 symbols with 35
symbols that were not shared between the two binaries.

In the cases of very low recall, Zignatures’s and FLIRT’s precision
rises. We attribute this to domain knowledge of ELF binaries with
Radare2 always finding the symbol __libc_csu_init, a function
with a size of 0 which without structure prediction, our fingerprint
does not.

6.2 Probabilistic Structural Inference
Dataset. To test if we can learn abstract relationships between

arbitrary functions in the general sense it is necessary to build a
large corpus of binaries with debugging information from different
software packages. We construct this dataset from thousands of
open source software packages from the Debian repositories.

This produced 188, 253 binaries with debugging information
from 14,000 different software packages resulting in 82GB of ex-
ecutables; we make the tools used to build this comprehensive
dataset available9. Of the 188, 253 ELF binaries, 17, 549 binaries
were compiled from the C language.We limit ourselves to C binaries

7https://github.com/punstrip/cross-compile-dataset
8For structural inference, punstrip makes the assumption that libc initialization (e.g.
libc_csu_init) and deinitialization (e.g. fini) functions can be found based on static
analysis and the ELF header. This assumption was also applied when evaluating Debin.
9https://github.com/punstrip/debian-unstripped

10

https://zydnamics.com/software/bindiff.html
https://github.com/punstrip/cross-compile-dataset
https://github.com/punstrip/debian-unstripped

Probabilistic Naming of Functions in Stripped Binaries ACSAC 2020, December 7–11, 2020, Austin, USA

Table 6: Evaluation on the accuracy of symbol inference of different corpora and the different technologies used.

Experiment IDA FLIRT R2 Zignatures Punstrip
𝑃 𝑅 𝐹1 𝑃 𝑅 𝐹1 𝑃 𝑅 𝐹1

gcc,og,dynamic -> gcc,og,dynamic 0.94 0.38 0.47 0.51 0.72 0.60 0.99 0.85 0.91

gcc,og,dynamic -> gcc,o1,dynamic 0.95 0.14 0.24 0.36 0.37 0.37 0.84 0.61 0.70

gcc,og,dynamic -> gcc,o2,dynamic 0.30 < 0.01 < 0.01 0.29 0.04 0.07 0.52 0.37 0.44

clang,o1,dynamic -> clang,o1,dynamic 0.78 0.38 0.51 0.40 0.49 0.43 0.97 0.87 0.92

clang,og,static -> clang,og,static 0.61 0.18 0.29 0.13 0.16 0.14 0.997 0.90 0.94

clang,og,static -> clang,o2,static 0.60 0.17 0.27 0.12 0.14 0.13 0.98 0.87 0.92

clang,og,static -> gcc,og,static 0.61 0.16 0.26 0.11 0.12 0.11 0.96 0.82 0.82

clang,og,static -> gcc,o2,static 0.61 0.16 0.26 0.11 0.12 0.11 0.98 0.83 0.84

Table 7: 10-fold cross validation against Debin and Punstrip.

Metric
Debin Punstrip

𝑃 𝑅 𝐹1 𝑃 𝑅 𝐹1

Exact 0.63 0.66 0.51 0.65 0.92 0.73

NLP 0.66 0.67 0.55 0.68 0.92 0.75

Symbol2Vec 0.68 0.69 0.57 0.70 0.93 0.77

only as we expect different relationships between functions across
different languages. Using the 17, 549 C binaries, we randomly split
the list of executables into 10 equally sized groups and perform
10-fold cross validation to evaluate our approach.

Explanation of Results. In evaluating the performance of our
probabilistic graphical model we used the same metrics as in (§6.1),
however we use three different measures of correctness. The first
being an exact match between the canonicalized ground truth and
our inferred function name, the second being our NLP matching
scheme, and lastly we consider an inferred name to be correct if
its Symbol2Vec representation is within the 5 closest vectors using
the cosine distance. The reason for doing so is that the sparsity of
function names across our corpus gives many names that are used
in similar ways whilst still not evaluating as similar in our NLP
matching scheme. Secondly, giving an analyst a list of the top 5most
likely symbol names and their corresponding probabilities allows
them to make an informed decision that may take into account
other information about the binary in question.

Table 7 displays the results of our large scale inference exper-
iment using 10-fold cross validation. From a detailed analysis of
the results our NLP and Symbol2Vec matching schemes correctly
pick up meaningful inferred function names where the exact cor-
rect name is not present in the training set. Both tools perform
worst on small dynamically linked binaries with little recognizable
relationships. Furthermore it is evident that punstrip may infer
symbol names that are structurally close on a micro-level to the
correct names however they lie in a different orientation; for ex-
ample symbol names with strong relationships between each other
are often predicted locally correct as a group but not necessarily in
the correct structural order which reduces our accuracy.

We build pairwise relationships up to the third degree and store
factors involving up to three functions. To improve our our tool’s
accuracy, we could trivially increase the dimensions of relationships
stored between functions however we were limited in our compu-
tational and storage resources for our large scale experiments.

7 LIMITATIONS
Throughout our approach, we rely on previous work [2] on function
boundary detection to justify the conditions for function boundaries
to be known. In real world environments, further errors may be
introduced in the function boundary extraction stage which could
have undesired effects in probabilistic inference due to the incorrect-
ness of the recovered graphical structure. We believe that sufficient
randomization of belief updates during loopy belief propagation
would minimize the impact on inference as we aim to maximize
the joint likelihood across all unknown nodes simultaneously.

Our probabilistic fingerprint may succeed when faced with small
changes to machine code; however there are often large unknown
functions in previously unseen or obfuscated binaries. It is highly
likely that punstrip would perform poorly on executables that are
highly obfuscated or contain hand written assembly code. Punstrip
is limited by the correctness of binary analysis; we make use of pro-
gram analysis to recover features and relationships between data
and code. Techniques which aim tomislead or impede program anal-
ysis are out of scope, however trivial obfuscation techniques such
as junk code insertion should overcome by the VEX IR optimization
step. Punstrip may be combined with existing reverse engineering
software suites or debuggers to analyze regions of memory contain-
ing unlabeled code; the prime example being recognizing functions
during software unpacking at runtime.

8 RELATEDWORK
We examine related work across probabilistic models for computer
programs (§8.1) and function fingerprinting (§8.2). Finally we look
at previous work using NLP (§8.3) for matching function names.

8.1 Probabilistic Models
The seminal work of Bichsel et al. [6] in building probabilistic
models is closely related to this work. They describe the process
of building linear chain condition random fields for sections of
Java bytecode based on a program dependency graph and utilize

11

ACSAC 2020, December 7–11, 2020, Austin, USA James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder

high-level information such as types, method operations and class
inheritance to build relationships for inference. When applying a
similar technique to machine code, the problem is exacerbated by
the lack of access to concrete information on which to build features
or known relationships to describe the semantics of code. The work
was built on the Javascript deobfuscation framework, JSNice [42],
which infers local variable names for Javascript programs using
CRFs. Other works utilize probabilistic graphical models to infer
properties of programs, e.g. specification [5] [32], verification [22]
and bug finding [22]. The closest work to ours that labels functions
in stripped binaries is Debin [23] which infers names of DWARF
debugging information and function names simultaneously.

Recent advances in function boundary detection in stripped
binary executables form a foundation of this work. We utilize Nu-
cleus [2] when inferring function names without known function
boundaries; a tool which uses spectral clustering to group basic
blocks into function boundaries and results are an improvement
over work by Rosenblum et al. [43] and Shin et al. [45], the former
uses a CRF and the later use neural networks to detect function
boundaries in binaries; however neither performs the task of func-
tion naming.

8.2 Function Fingerprinting
Work in binary function identification predominantly focuses on
the problems of clone or exact function detection. Code clone detec-
tion focuses on the recognition of previously seen functions [27].
Punstrip infers semantically similar names for previously unseen
functions based on modified known examples.

Unstrip [25] aims to identify functions in stripped binaries and
focuses on labeling wrapper functions around dynamic imports.
BinSlayer [7], BinGold [1] and BinShape [46] identify and label func-
tions in stripped binaries. They collect large numbers of features
such as system calls, control flow graphs and statistical proper-
ties in order to fingerprint functions. Static approaches such as
Genius [19] and discovRE [16] extract features from a binary’s Con-
trol Flow Graph (CFG) and rank the similarity of functions based
on the graph isomorphism problem. In contrast, punstrip utilizes
a probabilistic graphical model that uses higher-level features to
infer structure in stripped binaries; combined with Symbol2Vec and
our NLP analysis we suggest semantically similar function names.
Structural Comparison of Executable Objects [20] finds vulnera-
bilities through analyzing security patches. Gemini [51] creates
a feature embedding based on Structure2vec [12] for code clone
detection.

Dynamic approaches such as BLEX [15] and Exposé [38] use
symbolic execution and a theorem prover to rank the similarity
between pairs of individual functions. Egele et al. [15] employ
symbolic execution and compare dynamic traces from functions
to detect similar components. Others such as BinGo [9] and Multi-
MH [24, 41] try to describe a functions behavior by sampling each
function with random inputs to match known vulnerabilities across
architectures and operating systems. Gupta et al. [37] use a dynamic
matching algorithm for comparing control flow and callgraphs.

8.3 Symbol2Vec
Independently of us, Daniel De Freez et. al. [13] implemented path-
based function embeddings in a similar manner to Symbol2Vec.
Ding et. al. [14] built a vector embedding of features from a func-
tions assembly code in Asm2Vec and use it to perform code clone
detection.

9 CONCLUSION
We have presented punstrip, a novel approach for naming functions
in stripped executables that combines program analysis and ma-
chine learning to infer symbol information. We have demonstrated
that punstrip is a viable approach to learn a function fingerprint
that is capable of inferring symbols between multiple compilers
and optimization levels. Secondly we combine our fingerprint with
structure learning to predict symbol information in binaries using
all known relationships simultaneously rather than considering
each function in isolation. We carry out an extensive 10–fold cross
validated evaluation against C ELF binaries built from different
environments and compilers in the Debian Sid repositories and
make this dataset available.

We explore the subjective problem of evaluating the similarity
of previously unseen symbol names from different software reposi-
tories and develop both an NLP pipeline and Symbol2Vec model to
aid this comparison which we release to the community. We have
shown that it is possible to learn intrinsic relationships between
functions and transpose that information to other previously unseen
stripped binaries and suggest meaningful names for functions in
order to aid the reverse engineering process.

ACKNOWLEDGMENTS
James Patrick-Evans was supported by the EPSRC and the UK
government as part of the Centre for Doctoral Training in Cyber
Security at Royal Holloway, University of London (EP/K035584/1).

REFERENCES
[1] Saed Alrabaee, Lingyu Wang, and Mourad Debbabi. 2016. BinGold: Towards

robust binary analysis by extracting the semantics of binary code as semantic
flow graphs (SFGs). Digital Investigation 18 (2016), S11–S22.

[2] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-Agnostic
Function Detection in Binaries.. In 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. 177–189.

[3] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. Byteweight: Learning to Recognize Functions in Binary Code.. In Proceed-
ings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22,
2014. 845–860.

[4] Eli Bendersky. 2018. PyELFTools - A Python Library for parsing ELF files. https:
//github.com/eliben/pyelftools.

[5] Brian N. Bershad and Jeffrey C. Mogul (Eds.). 2006. Operating Systems Design
and Implementation (OSDI). USENIX Association.

[6] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin T. Vechev. 2016.
Statistical Deobfuscation of Android Applications.. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016. 343–355.

[7] Martial Bourquin, Andy King, and Edward Robbins. 2013. BinSlayer: accurate
comparison of binary executables.. In Program Protection and Reverse Engineering
Workshop. ACM, 4.

[8] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. A Limited
Memory Algorithm for Bound Constrained Optimization. SIAM J. Scientific
Computing 16, 5 (1995), 1190–1208.

[9] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho,
and Hee Beng Kuan Tan. 2016. BinGo: cross-architecture cross-OS binary search.
In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 678–
689.

12

 https://github.com/eliben/pyelftools
 https://github.com/eliben/pyelftools

Probabilistic Naming of Functions in Stripped Binaries ACSAC 2020, December 7–11, 2020, Austin, USA

[10] UC Santa Barbra Computer Security Lab and Arizona State University SEFCOM.
2020. Claripy: An abstraction layer for constraint solvers. (2020). https://github.
com/angr/claripy

[11] Marco Cova, Viktoria Felmetsger, Greg Banks, and Giovanni Vigna. 2006. Static
Detection of Vulnerabilities in x86 Executables. In 22nd Annual Computer Security
Applications Conference (ACSAC 2006), 11-15 December 2006, Miami Beach, Florida,
USA. 269–278.

[12] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative Embeddings of Latent
Variable Models for Structured Data.. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24,
2016. 2702–2711.

[13] Daniel DeFreez, Aditya V Thakur, and Cindy Rubio-González. 2018. Path-based
function embedding and its application to error-handling specification mining.
In Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 423–433.

[14] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. 2019. Asm2Vec:
Boosting Static Representation Robustness for Binary Clone Search against Code
Obfuscation and Compiler Optimization. In 2019 IEEE Symposium on Security
and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 472–489.

[15] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket
Execution: Dynamic Similarity Testing for Program Binaries and Components. In
Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August
20-22, 2014. 303–317.

[16] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. dis-
covRE: Efficient Cross-Architecture Identification of Bugs in Binary Code. In
23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016.

[17] Martín Abadi et al. 2016. TensorFlow: A System for Large-Scale Machine Learn-
ing.. In 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016. 265–283.

[18] Mohammad Reza Farhadi, Benjamin C. M. Fung, Philippe Charland, and Mourad
Debbabi. 2014. BinClone: Detecting Code Clones in Malware. In Eighth Interna-
tional Conference on Software Security and Reliability, SERE 2014, San Francisco,
California, USA, June 30 - July 2, 2014. 78–87.

[19] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable Graph-based Bug Search for Firmware Images. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016. 480–491.

[20] Halvar Flake. 2004. Structural Comparison of Executable Objects. In Detection
of Intrusions and Malware & Vulnerability Assessment, GI SIG SIDAR Workshop,
Ulrich Flegel and Michael Meier (Eds.), Vol. P-46. 161–173.

[21] Teresa Gonçalves and Paulo Quaresma. 2004. The impact of nlp techniques in
the multilabel text classification problem. In Intelligent Information Processing
and Web Mining. Springer, 424–428.

[22] Sumit Gulwani and Nebojsa Jojic. 2007. Program verification as probabilistic
inference.. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2007, Nice, France, January 17-19,
2007. 277–289.

[23] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin T. Vechev.
2018. Debin: Predicting Debug Information in Stripped Binaries. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018.

[24] Yikun Hu, Yuanyuan Zhang, Juanru Li, Hui Wang, Bodong Li, and Dawu Gu.
2018. BinMatch: A Semantics-Based Hybrid Approach on Binary Code Clone
Analysis. In 2018 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018. 104–114.

[25] Emily R. Jacobson, Nathan E. Rosenblum, and Barton P. Miller. 2011. Labeling
library functions in stripped binaries.. In Proceedings of the 10th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools, PASTE’11. 1–8.

[26] James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder. 2020. Feature
Embeddings for Binary Symbols with Symbol2Vec. https://www.github.com/
punstrip/symbol2vec.

[27] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE Trans. Software Eng. 28, 7 (2002), 654–670.

[28] Soomin Kim, Markus Faerevaag, Minkyu Jung, SeungIl Jung, DongYeop Oh,
JongHyup Lee, and Sang Kil Cha. 2017. Testing intermediate representations for
binary analysis. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November
03, 2017. 353–364.

[29] Daphne Koller and Nir Friedman. 2010. Probabilistic Graphical Models: Principles
and Techniques. MIT Press.

[30] Yujian Li and Bi Liu. 2007. A Normalized Levenshtein Distance Metric. IEEE
Trans. Pattern Anal. Mach. Intell. 29, 6 (2007), 1091–1095.

[31] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. 2006. GPLAG: detection of
software plagiarism by program dependence graph analysis. In Proceedings of
the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Philadelphia, PA, USA, August 20-23, 2006. 872–881.

[32] V. Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya Banerjee.
2009. Merlin: specification inference for explicit information flow problems..
In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. 75–86.

[33] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).

[34] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality.. In Advances in Neural Information Processing Systems. 3111–3119.

[35] George A. Miller. 1995. WordNet: A Lexical Database for English.. In Communi-
cations of the ACM, Vol. Vol. 38, No. 11:. 39–41.

[36] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. 2013. Loopy Belief Prop-
agation for Approximate Inference: An Empirical Study. CoRR abs/1301.6725
(2013).

[37] Vijayanand Nagarajan, Rajiv Gupta, Matias Madou, Xiangyu Zhang, and Bjorn De
Sutter. 2007. Matching Control Flow of Program Versions.. In 23rd IEEE Interna-
tional Conference on Software Maintenance (ICSM 2007), October 2-5, 2007, Paris,
France. 84–93.

[38] Beng Heng Ng and Atul Prakash. 2013. Expose: Discovering Potential Binary
Code Re-use. In 37th Annual IEEE Computer Software and Applications Conference,
COMPSAC 2013, Kyoto, Japan, July 22-26, 2013. 492–501.

[39] Coseinc NguyenAnhQuynh. 2014. Capstone: Next-GenDisassembly Framework..
In BlackHat USA.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[41] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-Architecture Bug Search in Binary Executables. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015.
709–724.

[42] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from “Big Codea.". In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Mumbai, India)
(POPL ’15). ACM, New York, NY, USA, 111–124. https://doi.org/10.1145/2676726.
2677009

[43] Nathan E. Rosenblum, Xiaojin Zhu, Barton P. Miller, and Karen Hunt. 2008.
Learning to Analyze Binary Computer Code.. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July
13-17, 2008. 798–804.

[44] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. 2011. Weisfeiler-Lehman Graph Kernels. Journal of
Machine Learning Research 12 (2011), 2539–2561.

[45] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
Functions in Binaries with Neural Networks.. In 24th USENIX Security Symposium
(USENIX Security 15). USENIX Association, Washington, D.C., 611–626.

[46] Paria Shirani, Lingyu Wang, and Mourad Debbabi. 2017. BinShape: Scalable
and Robust Binary Library Function Identification Using Function Shape.. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 301–324.

[47] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2015. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. (2015).

[48] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[49] Charles A. Sutton and Andrew McCallum. 2012. An Introduction to Conditional
Random Fields. Foundations and Trends in Machine Learning 4, 4 (2012), 267–373.

[50] Andre Nikolaevich Tikhonov, A Goncharsky, VV Stepanov, and Anatoly G Yagola.
2013. Numerical methods for the solution of ill-posed problems. Vol. 328. Springer
Science & Business Media.

[51] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection.. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017. 363–376.

[52] Zynamics. 2019. Using BinDiff v1.6 for Malware analysis. (2019). https://www.
zynamics.com/downloads/bindiff_malware-1.pdf

13

https://github.com/angr/claripy
https://github.com/angr/claripy
https://www.github.com/punstrip/symbol2vec
https://www.github.com/punstrip/symbol2vec
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2676726.2677009
https://www.zynamics.com/downloads/bindiff_malware-1.pdf
https://www.zynamics.com/downloads/bindiff_malware-1.pdf

	Abstract
	1 Introduction
	2 Overview
	2.1 Probabilistic Fingerprint
	2.2 Probabilistic Structural Inference
	2.3 Function Name Matching and Evaluation

	3 Probabilistic Fingerprint
	3.1 Static Analysis
	3.2 Symbolic Analysis
	3.3 Probabilistic Classification

	4 Probabilistic Structural Inference
	4.1 CRF Generation
	4.2 Parameter Estimation
	4.3 CRF Inference

	5 Matching Function Names
	5.1 Lexical Analysis
	5.2 Symbol2Vec

	6 Evaluation
	6.1 Probabilistic Fingerprint
	6.2 Probabilistic Structural Inference

	7 Limitations
	8 Related Work
	8.1 Probabilistic Models
	8.2 Function Fingerprinting
	8.3 Symbol2Vec

	9 Conclusion
	Acknowledgments
	References

