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Overview 
Machine Learning (ML) classifiers have demonstrated impressive performance in 
various domains, particularly in discriminating between malicious and benign 
behavior in security-sensitive settings (e.g., malware detection, anomaly detection, 
code attribution, platform abuse). However, it has been shown that adversaries can 
attack classifiers by carefully altering input data in order to manipulate their outputs.
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A well-studied example of an adversarial ML attack is the evasion attack.  
Using a gradient-driven methodology, it's possible to calculate an ideal 
perturbation   to apply to the original object  which will result in the 
target classifier misidentifying it as a different class. 
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Problem-Space Constraints 
In order to formally express realizable attacks, we 
identify four main sets of constraints common to all  
problem-space manipulations:

Harvesting Benign Gadgets

Generating Adversarial Examples
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Available transformations: the viable modifications which can 
be performed in the problem space by the attacker (e.g., only 
addition and not removal).

Preserved semantics: behaviour that should remain during 
mutation, w.r.t. specific feature abstractions the attacker aims to 
be resilient against (e.g., in programs, the same dynamic call 
traces). Semantics may also be preserved by construction. 

Plausibility: how to determine if the generated example is 
realistic upon manual inspection (e.g., an adversarial image 
looks like a valid image from the training distribution). 

Robustness to preprocessing: robustness against non-ML 
techniques that could trivially defeat the attack (e.g., filtering in 
images, dead code elimination in programs).

The Nature of Side-Effects  
Satisfying problem-space constraints often produces 
side-effect features which can prevent optimal 
gradient-driven attacks.

After following the gradient-based attack ∗ derived from  on the 
feasible feature space , a necessary projection to fit into the feasible 
problem space  results in additional features  which may have 
positive or negative effects on the classification of the attack point. 
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Evading Android Malware Detectors 
With this formalization, we can design a new attack to evade Android classifiers  that 
overcomes limitations of past solutions in this domain. We borrow methods from 
automated software transplantation to transplant benign code slices from real apps 
to a malicious host and trick the detector.

T Code addition through automated software transplantation.

Υ Malicious semantics are preserved by construction using opaque 
predicates (new benign behaviour is never executed at runtime).

Π Only functional code is injected rather than orphaned urls, api calls, etc.  
Statistical footprint (e.g, code size) remains close to the benign distribution.

Λ Robust to: removal of redundant code, undeclared variables, unlinked 
resources, undefined references, naming conflicts, no-op instructions.
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Identify feature  
entry point

Choose any vein 
(backward slice)

Collect organ 
(forward slice)

Include transitive 
dependencies

Collect additional 
references

1 2 3 4 5 Store organs in  
an ‘ice-box’
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Identify activity  
in dex

Extract intent  
creation and  
startActivity()

Gather activity  
definition

Recursively collect 
dependencies

Include resources 
and permissions  
used by activity

Save gadget to a 
database ready for 
the attack

</> </> </> </> </>

</>

To preserve semantics, 
the vein is guarded by an 
opaque predicate

</>

</>

First, use the classifier’s 
feature weights to select 
the ‘most benign’ feature

Then a candidate organ 
that exhibits the chosen 
feature is selected

Next, the chosen parts 
are repackaged back 
into an APK

Finally, the classifier 
is queried again. If 
still malicious, we 
repeat. 

Repeat until misclassification successful

Otherwise, success! 
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However, in many settings it is not possible to convert this ideal feature 
vector back into a real problem-space object due to the inverse feature 
mapping problem. In these cases, the ideal transformations required to 
induce  in  are simply not available because of various constraints that 
exist only in the problem space (e.g., plausibility).
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In this work we clarify the relationship between feature-space and problem-space and 
propose a general formalization for problem-space attacks, including a 
comprehensive set of constraints to consider. This allows us to highlight the strengths 
and weaknesses of different approaches and better formulate novel attacks.

“panda” 
56.7% confidence

“gibbon” 
99.3% confidence
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Based on the conference paper presented at IEEE Security and Privacy, 2020

When there’s a need to evade detection…

…feature-space perturbations make a good disguise…

…but in the problem space, the ideal transformations might not be available.


