

Detecting Concept Drift in Malware Classification Models

Research Objective

Identify "aging" in ML models for malware classification – which predictions can be trusted?

Concept Drift: After a model is trained, malware may evolve, and new malware families may arise.

Intuition: Do objects "fit" well into the predicted class(es)?

P-value: The ratio of the number of training elements less similar than the element under test to total class members.

Example: distance from centroid $p-val((\bigcirc)) = \frac{7}{10}$ $p-val((2)) = \frac{4}{12}$

Algorithm-agnostic, uses a score from the ML classifier **Conformal Evaluator (CE)** statistically evaluates classifiers **Per-class thresholds** identify unreliable predictions

Transcend derives per-class thresholds by solving an optimization problem to achieve a trade-off between the performance and the number of rejected elements.

R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov, L. Cavallaro Transcend: Detecting Concept Drift in Malware Classification Models. Proceedings of USENIX Security, 2017 • https://s2lab.kcl.ac.uk/projects/ce/

Roberto Jordaney, Feargus Pendlebury, Fabio Pierazzi, Lorenzo Cavallaro

Royal Holloway, University of London and King's College London

Solution

Testing Phase

What happens when a new object arrives?

	Drebi	in Dataset		Marvin Dataset				
	Type Obj		ects		Туре		Objects	
	Benign 123		,456		Benign		9,592	
	Malware 5		,560		Malware		9,179	
	TPR		TPR		FPR		FPR	
	reliable predictions		unreliable predictions		reliable predictions		unreliable predictions	
	p-value	prob.	p-value	prob.	p-value	prob.	p-value	prob.
1 st quartile	0.9045	0.6654	0.0000	0.3176	0.0007	0.0	0.0000	0.0013
Median	0.8737	0.8061	0.3080	0.3300	0.0000	0.0	0.0008	0.0008
Mean	0.8737	0.4352	0.3080	0.3433	0.0000	0.0	0.0008	0.0018
3 rd quartile	0.8723	0.6327	0.3411	0.3548	0.0000	0.0	0.0005	0.0005

Without Transcend				With Transcend								
Predicted label				Predicted label				Predicted label				
ample	Benign	Malicious	Rec.	Sample	Benign	Malicious	Rec.	Sample	Benign	Malicious	Rec.	
enign	4,498	2	1	Benign	4,257	2	1	Benign	4,413	87	0.98	
lalicious	2,890	1,610	0.36	Malicious	504	1,610	0.76	Malicious	225	4,245	0.94	
rec.	0.61	1		Prec.	0.89	1		Prec.	0.96	0.98		

Without Transcend				With Transcend								
Predicted label				Predicted label			Predicted label					
Sample	Benign	Malicious	Rec.	Sample	Benign	Malicious	Rec.	Sample	Benign	Malicious	Rec.	
Benign	4,498	2	1	Benign	4,257	2	1	Benign	4,413	87	0.98	
Malicious	2,890	1,610	0.36	Malicious	504	1,610	0.76	Malicious	225	4,245	0.94	
Prec.	0.61	1		Prec.	0.89	1		Prec.	0.96	0.98		

Malware

Ramnit Lollipop Kelihos`ve

Vundo

CE's p-values help to reveal the quality of predictions made by the decision algorithm.

This research has been partially supported by UK EPSRC grants EP/K033344/1, EP/L022710/1, and EP/K006266/1, as well as the NVIDIA Corporation.

Experiments on Malware

Binary Classification

Multi-class Classification

Microsoft Malware Classification Challenge Dataset

	Objects	Malware	Objects	
	1,541	Obfuscator.ACY	1,228	
	2,478	Gatak	1,013	
er3	2,942	Kelihos`ver1	398	
	475	Tracur	751	

